

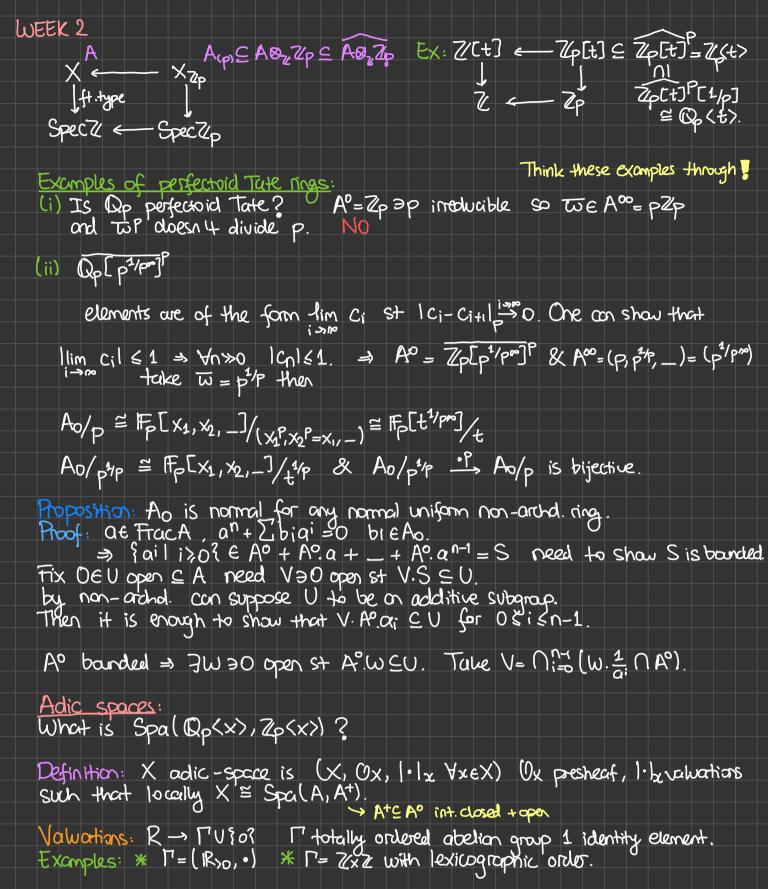
Theorem (School): If X is a perfectoid space then $X \in X \cong X$ WEEK 1: val examples: * Y quasi - proj / \mathbb{Q}_{p} (\mathbb{Z}_{p}) \longrightarrow X perfectoid. (**) Usual examples: How to apply the thm. as in (*) Understand the nations and possibly the proof of the thm. Definition: X is a perfectoid space if it is an <u>adic-space</u> and locally \cong Spa(A,A^t) where (A,A^t) is a <u>perfectoid Huber pair</u>. C variant of Spec for adic spaces

Definition: (A,A^t) is a perfectoid Huber pair if it is * A is a perfectoid Tate ring * At a ring of integral elements in A. (open normal subring $\subseteq A^\circ$) Definition: Let B be a topological ring (a) B is non-orthinmedian if 7 a fordamental system of open neigh. {Bil of OEB St B; are additive subgroups.

(b) B is adic if Bi = Ii for some I & B. * &[x] I=(x) * &[x] I=(x) * Z_P I=(p)fim Z/pnZ → (0,p,p,_)=p (c) B is f-adic if (i) there exists Bo⊆B open subring (ii) ICBo finitely gen. with which Bo is I-adic. Examples 2: * prev. examples w1 Bo=B * B= Bp Bo=Zp * B=&((x)) Bo=&[[x]]. (d) B is a Tate ring if B is f-adic + there is a topologically nilpotent in B. beB is top, nilpotent if fimb" -> 0. Examples: * Examples 1 not Tate * Examples 2 Tate. Valuations: (ring w/ multiplicative valution = normed ring). multiplicative additive take 1.1= e-v(.) and 1.)p=p-v(.) V(a.b) = V(a) + V(b) V(a+b) > min(v(a),v(b)) • |a.b| = |a|. |b| latbl & maxilal, 161? • V(1) = 0 • V(0)= \pi • |1|=1 • |0|=0 Example: (/c, 1-1) nonned field , &<x1, -, xd>={ Z veind avx > € &[x1, -, xd] | max { lav1 | > = degn? ~> 0 }. eg. Znein Pnxn ∈ Op(x> but Op(x> > Znein xn = 1/x-1 * Zai aick, |Zi=rail < max [lail li=r,-,s] ⇒ Zia; is con. ⇒ lail → O. \Rightarrow $\{ (x_1, -, x_d) = \{ \sum a_0 x^0 \mid \text{convergent on the closed unit disc} \}$

```
k\langle x_1, -, x_n \rangle is a normed ring w/ this norm. 
for f \in k\langle x_1, -, x_n \rangle is it true |f| = mcx \{|f(c)| \mid C \in \mathbb{D}^2\} maybe condition on k. What if sup instead of mcx.
   Note Zp[x1,-,xn]P[1/p] = Qp(x1,-,xn)
                            A^{1}_{ZP} A^{1}_{ZP} generic fitter ???? Q_{P}(x_{1}, -, x_{n}).
               in Act
                            Spec Up Spec Up - Spec Oup
Boundedness in topological rings:
Example: B normed ring, Uc := {be B | Ib| < c? open by definition but also, Dc = { be B | Ib| < c? is open. Both are bounded.
 Take some open U as in def => 3Ud ⊆U take V=Udrc.
\Rightarrow D1 contains only power bounded elements.
Take b \in B \setminus D_1 \Rightarrow 11, b, b^2, -? is it bounded? Take U = U_1 as in definition
 assume \exists V as in the definition \Rightarrow no U_{\varepsilon} is contained in V \Rightarrow contradiction.
 SO:
         D1= 1 power bounded etts.7.
Definition: A top ring => A0 = { power bounded etts?, A00 = { topologically, nilpotent ett?
                        1-fop nilp => power bounded
ing (111) A<sup>oo</sup> (1 A<sup>o</sup> (1 is it prime?)
        AOC A subring (is it open?)
Example: B normed ring, Bo= i be B | 16161i, Boo= 1 be B | 16161i.
      B 3803800
                                                                  prime ideal.
      Q 2 2 2 2 PZp
Definition: Elements of A<sup>20</sup>1803 are pseudo-uniformizers.
Definition: A is a non-arch topological ring. A is called uniform if A^o is bounded.
   Example: named rigs.
Definition: Tate ring A<sup>O</sup>is perfectoid if it is (p prime fixed)
    · Complete
                                     unit in A
    Uniform
    · 3 to EA pseudo uniformizer Such that
         (i) \varpi P P P = (1i) A P A \longrightarrow A P \longrightarrow X P = 1s cn isomorphism.
Note: perfectoid Tate ring is not a perfectoid ring but A° is.
```

norm on the Tate algebra: $|\Sigma a_v x^v| = \max |a_v| \exp for |0| = 0$.



The valuation 1.1x is an $0x_1x$ and $Suppl.1x:= \{0 \in 0x_1x \mid |\alpha|_{x}=0\} = m_{x_1x}$.

Definition: Morphisms of adic spaces: $(f,f^{\#})$ st $f^{\#}: \mathcal{Q}_{+} \to f_{\#}\mathcal{Q}_{\times}$ morphisms of presheaves of top rings st $|\cdot|_{f(x)} \circ f_{\times}^{\#} = |\cdot|_{\times}$.

 $\frac{\text{Spa}(A,A^{\dagger}): \text{ continuous valuations}}{\text{points}: \{|\cdot|_{x} \in \text{Cont}(A) \mid |A^{\dagger}|_{x} \leq 1\}} \quad \frac{\text{valuations}}{\text{Cont}(A) = \{x \in \text{Spv}(A) \mid \forall y \in \Gamma : \{a \in A : |a| < y\}\}} \quad \text{is open } \}.$

Note: Supp 1.1x CA is a prime ideal. Rx:= {aeA | |a| < 1? subring.
Px:= {aeA | |a| < 1? CRx prime.

Proposition: { val on A with Supp= {0 ?? <---> { val. on K(A) }. Example: Valuations of Q: \iff valuations of $\mathbb Z$ with Supp = 0. Let $1 \cdot 1$ be such a P1. = (0) or p2. Valuation. $R_{1-1} = \mathbb{Z}$ if Pil= PZ. => Vne Zn=pi.m m&pZ. if P1=(0) => 1.1=1.11 |n|= |p|i => 1.1= 1.1p. topology: main idea: $\{x \in \text{Spa}(A,A^{+}) \mid |\frac{f}{g}|_{x} \leq 1\} \rightarrow \text{precise def. } \mathbb{R}\left(\frac{f_{1},-f_{n}}{g}\right)$ where $(f_1, -, f_n) \subseteq \text{quen } A \text{ ord } R(f_1 - f_n) = \{x \in \text{Spa}(A, A^+) \mid \forall i \text{ If } i \leq |g| \neq 0\}.$ Example: LE Da = Tp (Do(x) > Zaixi -> Zaixi $R(\frac{x}{P}) = \{ |\cdot|_{x} \mid |x|_{x} \leq |p|_{x} \} = p \mathbb{Z}_{p}.$ WEEK 3: Definition: Valuation subring, $R_{I-1x} = \{a \in A \mid |a|_x \le 1\}$, $P_{I-1x} = \{a \in A \mid |a|_x < 1\}$ is a prime ideal of R_{I-1x} and $Supplix = \{a \in A \mid |a|_x = 0\}$ is a prime ideal of A. Definition: Let K be a field. ACK is a valution ring if YXEK non-zero either XEA or X-1EA. There is a correspondence: $R \subseteq K$ valuation. Short term goal: Computing Spal Op, Zp) & Spal Zp, Zp). Proposition: 1.1x & Cont(A) => Dc= faeA | lal & C? open & closed in A YCE Tx. Claim: For any 1.18 Spv(A), lal<161 => la+bl=161. Proof: 1a+b1 & max { | a1,161? > 1a+61 < 161. | $bl \le max \S l-al, lb+al\S \Rightarrow lbl \le lb+al.$ | Proof: Let aeA St | $al \le c$. B(a,c) = $\S beAllb-al < c\S$ This is open in A because $l \cdot lx$ is continuous. Strict triangle inequality implies that De is open. Claim > Yae AID then Black = AYD. Remork: Let 1.1, be a cont. valuation on Ep or Op then Rx Eclosed Op or Ep but ZERx = ZERx = ZpCRx. Example: Let 1.1x & Cont(Op). Op is a field => Suppliex=0. As 1.1, & Cont(Op), $\Rightarrow \mathbb{Z}_p \subseteq \mathbb{R}_x \neq \mathbb{Q}_p \Rightarrow \mathbb{Z}_p = \mathbb{R}_x. \quad \text{(there is no ring between } \mathbb{Z}_p \text{ and } \mathbb{Q}_p).$ $\Rightarrow \mathbb{R}_x = \mathbb{P}\mathbb{Z}_p \Rightarrow \mathbb{P}_x = \mathbb{P}_x = \mathbb{P}_x \Rightarrow \mathbb{P}_x \Rightarrow \mathbb{P}_x = \mathbb{P}_x \Rightarrow \mathbb{P}_x$ Example: Spal Zp, Zp), previous argument shows that if Suppl-1=0 then $|\cdot| = |\cdot|_P$. Suppose Suppl- $|\cdot|_X = p.Zp \Rightarrow |\cdot|_X = |\cdot|_1 \circ evp$ where $evp.Zp \Rightarrow |fp.$ $ext{2} \Rightarrow Spa(Zp, Zp) = { |\cdot|_P, |\cdot|_1 \circ ev} =: |\cdot|_{1,p}{}$ What is the topology on Spa(Zp, Zp)? $|\cdot|_{1,p} \in R\left(\frac{f_1 - f_n}{g}\right) \Rightarrow |g|_{1,p} \neq 0$ \Rightarrow $|g|_p = 1 \Rightarrow |\cdot|_p \in \mathbb{R}(\frac{f_1 - f_n}{g})$. To conclude suffices to show that $\{|\cdot|_p\}$ is open but $\mathbb{R}(\frac{f_1}{f_0}) = \{|\cdot|_p\}$

Mid-lem Goal: Understanding Cp(x), $Cp = \widehat{Q}p$. Shortern Goal: algebra of $k < x_1, -, x_n > for k normed + complete field.$ I FOR FELL(X1, _, xn) If I = max i If (a) I: a \in ID(\overline{L})? Hint: if If I = 1 then the valuation ring is R1.1(x1, -, xn) where R1.1 is the valuation ring of &. Then R_{1} , $(x_1, -, x_n)/p$. R_{1} , $(x_1, -, x_n) \cong (R/p)[x_1, -, x_n]$ $f \mapsto \overline{f} \neq 0$. $f \in k(x_1, -, x_n)$ w/ |f|=1 then f is invertible \Leftrightarrow as above $R[\cdot|\langle x_1, -, x_n \rangle/p, R[\cdot, \langle x_2, -, x_n \rangle] \cong (R/p)[x_1, -, x_n]$ and $f \in (R/p)^{\times}$ Constant Coeffl=1 I all other coeff! <1. Very Short term goal: Weierstrass division — works only for distinguished Definition: $g \in k(x_1, -, x_n)$ is x_n -distinguished of order s if when you write $g = \sum_{i \in \mathbb{N}} g_i x_i^i$ where $g_i \in k(x_1, -, x_{n-1})$ then $(1) g_s \in k(x_1, -, x_{n-2})^*$ $(2) |g_i| < |g_s| \forall i > s$. Remark: $0 \neq f \in k \langle x \rangle \Rightarrow f$ is x-distinguished. Moreover, of preserves 1.1. $x_n \mapsto x_n$ Moreover, to preserves 1.1. Example: $xy \in l(x,y)$ is not distinguished. Consider $(x+yq)y = xy + y^{1+q}$ if a > 1 then this is distinguished. Theorem: (Weiestrass division) $g \in \{k < x_1, ..., x_n > x_n - distinguished of orders. Then <math>\forall f \in \{k < x_1, ..., x_n > \exists ! q \in \{k < x_1, ..., x_n > \} \} \in \{k < x_1, ..., x_{n-1} > [x_n] \} \in \{k < x_1, ..., x_{n-1} > [x_n] \} \in \{k < x_1, ..., x_{n-1} > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_n > [x_n] \} \in \{k < x_1, ..., x_$ unicity in the above theorem & If I = max { Iq1 | q1, 151? Proof of the existence: $f = \sum_{i \le t} f_i \times h$ for $f_0 = \sum_{i \le t} f_i \times h$ write $f = f_0 + f$ St |f| < E|f| and $|f_0| = |f|$. We may assume |g| = 1. Write g as, g = go + g where go = Zissgixn => lgl<1 & lgol=1. fo = 90.90 + 70 division in $2k < x_1, ..., x_{n-1} > [x_n]$ then degro < s. Ifol = 100 + 100 lecture the highest value term of 90 = 100 is in degro. 30 = 100 left = 100 = 10f = 90.9 + 10 + (f-90.g) let &= 1g1 now let f1:= f-90g then If11 < & 1f1

then repeat the argument to get $f_1 = q_1 g + r_1 + f_2$ $f = \sum_i f_i = (\sum_i q_i)g + (\sum_i r_i)$ convergent by the E bounds. WEEK 4: Remark: 0 = f e k(x) => f is distinguished Corollary: &<x> Euclidian W/ N: &&x>\f0? -> Z $\Rightarrow k(x)$ is PID. finder to which f is distinguished. Corollary 1: Suppose k=k, mck(x) max. ideal (x> rn=(x-x) st 12161. Corollary 2: $f \in k\langle x_1, -, x_n \rangle \times_{n-1} \text{dist.} \Rightarrow \exists ! \text{monic} \text{ g} \in k\langle x_1, -, x_{n-1} \rangle [x_n] & \text{ u} \in k\langle x_1, -, x_n \rangle^{\times} \text{ such that } f = g. \cup & |g| = 1.$ Proof of 2: S= order of f, by scaling we may assume |f|=1. $X_n^S=q.f+\Gamma & |\Gamma|,|q| \leqslant 1 \Rightarrow X_n^S-\Gamma=q.f \Rightarrow letting <math>g=X_n^S-\Gamma$, $|g| \leqslant 1 & g$ manic. We need q invertible. \Rightarrow reduce to $R/m[x_1,-,x_n]$ $g=g\cdot f$, x_n -degree of f & g are s and deg s coefficient is invertible. \Rightarrow after reduction constants \Rightarrow q constant \Rightarrow q invertible. Proof of 1: (1) $\text{th} \subseteq \text{k}(x)$ maximal $\Rightarrow \text{th} = (f)$ firreducible $\Rightarrow f = 0.9$ as above \Rightarrow tn=(g) write g= $\Pi_{i}^{r}(x-\lambda_{i})$ st $|x-\lambda_{i}| \Rightarrow |\lambda_{i}| \leq 1$ One of $x-\lambda_{i}$ is not inv. $\Rightarrow (x-\lambda_{i})=m$. (2) -k(x) = -k $\Sigma a_i x^i \mapsto \Sigma a_i x^i$ Claim: $k \in e v_x = (x - \lambda)$. Use Euclidian division. Compllary: for he not necessarily alg. closed, I max ideals of hexxxi ~ Nullstellensott { ker ey; LEE, | 2| < 13. and $\lambda,\lambda'\in k$ gives the same maximal ideal \Leftrightarrow are Galois conjugate. Corollary: & (x1, -, xn) is Noetherian. Proof: g E I S A non-zero WMA g xn-distinguished. Weiestrass division \Rightarrow A/g is a finite $k(x_1, -, x_{n-1})$ -module by induction A/G is Noetherical module over $k(x_1, -, x_{n-1}) \Rightarrow I/g$ is finitely gen. as a $k(x_1, -, x_{n-1})$ module and thus also as a & < x1, -, xn> - module => I finitely generated. As in Rings & Modules Show that Nullskelleneutz holds for any n. Ctlint: Noether norm. J. Example: $K = \mathbb{Q}p$ $A = \mathbb{Z}p$ or $K = \mathbb{Q}p^{nr} = \mathbb{Q}p^{nr}$ | Pm= fae Opr | lal<13=p.A (b) => 3! extension of Into to Co= Op A/m = Fp. X = Spa(K(x), A(x)). There is a map $Spa(K(x), A(x)) \rightarrow SpecK(x)$ - Suppl·l 1.1 1-12 + Kerey what are 1-1x. When Suppl·Ix is not open 1.1x is called on analytic point Note that ker eng is not open. $K \longrightarrow K(X) \xrightarrow{\text{QUA}} K \xrightarrow{\text{I-I}_{2}} C_{\text{I-I}_{2}}$

For simplicity assume $\lambda \in K$,

Diagram Shows that $B^{-1}(18<c1)$ open $\Rightarrow \alpha^{-1}(18<c1)$ open \Rightarrow descent 1.1 continuous. $\Rightarrow |\cdot| = |\cdot| p \Rightarrow |\Sigma q_i x^i| = |\Sigma q_i \lambda^i| p$ Homework to The same thing happers when $\lambda \in K$. Showing 1.1 cts. is the issue. As soon as we show that $|A(x)|_x = |ev_{\lambda}A(x)|_p \leq 1$ (which is immediate) we have that $|D = \overline{B}(0|1) \subseteq Spa(K(x), A(x))$ set theoretically.

Claim: ID op Spa(K(x), A(x)) is a homeomorphism on its image. $\lambda \mapsto 1 \cdot 1_{\lambda_1 p} := 1 \cdot 10 \cdot ev_{\lambda}$ Proof: (1) $\{\lambda \in ID \mid 1\lambda \mid p < C\}$ open $R(\stackrel{\times}{J})$ with |d| = c works. (2) Take $U = R(\frac{f_1 \cdot - \cdot f_n}{9})$ pick $\lambda_0 \in U$ ucht $\exists \, \xi > 0 \, \text{ st } |\lambda - \lambda_0| p < \varepsilon \Rightarrow \lambda \in U$

Lemma: $f = \mathbb{Z}q_i \times i \in \mathbb{K} \langle x \rangle \ \lambda_0 \in \mathbb{D} \ \text{st} \ | \mathbb{Z}q_i \lambda_0^i |_{P}.$ $\exists \mathcal{E} \text{ 70 st} \ | \lambda - \lambda_0|_{P} \langle \mathcal{E} \Rightarrow | \mathbb{Z}q_i \lambda^i|_{P} = | \mathbb{Z}q_i \lambda^i|_{P}.$ Proof: Fix $n \text{ st} \ | \text{ 1ail}_{P} \langle C \text{ for } i \rangle n. \Rightarrow | \mathbb{Z}_{i=n}^{\infty} q_i \lambda^i|_{P} \langle C. \text{ So enough to show}$ $\exists 1 \gg \mathcal{E} \text{ 70 st} \ | \lambda - \lambda_0|_{Q} \langle \mathcal{E} \Rightarrow | \mathbb{Z}_{i=n}^{\infty} q_i \lambda^i|_{P} = | \mathbb{Z}_{i=0}^{\infty} q_i \lambda_0^i|_{P}.$

Consider $|\Sigma_{i=0}^n a_i(\lambda^i - \lambda_i)|_p \le \max_i |a_i|_p |_{\lambda - \lambda_0}|_p$ choose $\epsilon \le + this$ is smaller than c and we are done.